
Eur. Phys. J. C 47, 171–186 (2006) THE EUROPEAN
PHYSICAL JOURNAL C

Digital Object Identifier (DOI) 10.1140/epjc/s2006-02530-x

Phenomenological analysis connecting proton–proton
and antiproton–proton elastic scattering
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Abstract. Based on the behavior of the elastic scattering data, we introduce an almost model-independent
parameterization for the imaginary part of the scattering amplitude, with the energy and momentum trans-
fer dependences inferred on an empirical basis and selected by rigorous theorems and bounds from axiomatic
quantum field theory. The corresponding real part is analytically evaluated by means of dispersion rela-
tions, allowing connections between particle–particle and particle–antiparticle scattering. Simultaneous fits
to proton–proton and antiproton–proton experimental data in the forward direction and also including data
beyond the forward direction lead to a predictive formalism in both energy and momentum transfer. We
compare our extrapolations with predictions from some popular models and discuss the applicability of
the results in the normalization of elastic rates that can be extracted from present and future accelerator
experiments (Tevatron, RHIC and LHC).

PACS. 13.85.Dz; 13.85.-t

1 Introduction

Elastic hadron–hadron scattering, the simplest hadronic
collision process, still remains one of the topical theoret-
ical problems in particle physics at high energies. In the
absence of a pure QCD description of these large-distance
scattering states (soft diffraction), an empirical analysis
based on model-independent fits to the physical quanti-
ties involved plays an important role in the extraction of
novel information, that can contribute with the develop-
ment of useful calculational schemes in the underlying field
theory.
In this context, empirical parameterizations of the scat-

tering amplitude and fits to the differential cross section
data have widely been used as a source of the model-
independent determination of several quantities of interest
(the inverse problem), such as the profile, the eikonal, the
inelastic overlap functions, and, with some additional hy-
potheses, even information on the form factors (momen-
tum transfer space). These aspects were recently reviewed
and discussed in [1], where a list of references to some
essential results can also be found. However, one aspect
of this kind of analysis concerns its local description of
the experimental data; that is, the free parameters are
inferred from fits to each energy and to each interaction
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process, and therefore the approach has no predictive char-
acter. In this work we present a novel parameterization
for the imaginary part of the elastic scattering amplitude
with energy and momentum dependences extracted from
the empirical behavior of the experimental data and se-
lected according to some high-energy theorems and bounds
from axiomatic quantum field theory. The real part of the
amplitude is analytically evaluated by means of disper-
sion relations, connecting, therefore, particle–particle and
particle–antiparticle scattering. In this context, the scat-
tering amplitude is expressed as entire functions of the
momentum transfer and of the logarithm of the energy.
Global fits to proton–proton (pp) and antiproton–proton
(p̄p) experimental data in the forward direction (total cross
section and the ρ parameter) and, in a second step, also in-
cluding the differential cross sections, lead to a predictive
formalism in the energy and momentum transfer, which
is also essentially model independent. We present extrap-
olations for values of the energy and momentum transfer
above those reached in experiments and compare with pre-
dictions from some phenomenological models. We also dis-
cuss the applicability of the results in the normalization of
the elastic rates that can be measured in present and future
accelerator experiments (Fermilab Tevatron, Brookhaven
RHIC and CERN LHC).
As will be stressed, this analysis must be seen as

a first step or attempt toward a formally rigorous model-
independent description of high-energy elastic hadron
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scattering, embodying a predictive character. In this sense
we shall attempt to discuss and explain, in certain detail,
the advantages and disadvantages of the present analysis
and results.
The paper is organized as follows. In Sect. 2 we discuss

the empirical and formal bases of the parameterization for
the imaginary part of the scattering amplitude and the an-
alytical determination of the corresponding real part by
means of dispersion relations. In Sect. 3 we present the fit
procedures and results, treating firstly only the forward
scattering and, in a second step, including the differential
cross section data. In Sect. 4 we discuss the physical im-
plications and applicability of the approach, in the experi-
mental and phenomenological contexts. The conclusions
and some final remarks are the contents of Sect. 5.

2 Analytical parameterization for the
scattering amplitude

The physical quantities that characterize the elastic hadron
scattering are given in terms of the scattering amplitude
F , which is expressed as a function of two Mandelstam
variables in the center-of-mass system, usually the energy
squared s and the momentum transfer squared t=−q2. We
shall base our discussion on the following physical quanti-
ties [2]: the differential cross section,

dσ

dq2
=

1

16πs2
|ReF (s, q2)+ i ImF (s, q2)|2 , (1)

the total cross section (optical theorem),

σtot(s) =
ImF (s, q2 = 0)

s
, (2)

the ρ parameter (related with the phase of the amplitude in
the forward direction),

ρ(s) =
ReF (s, q2 = 0)

ImF (s, q2 = 0)
, (3)

and the slope of the differential cross section in the forward
direction,

B(s) =
d

dq2

[
ln
dσ

dq2
(s, q2)

]
q2=0

. (4)

Equations (1) and (2) represent normalizations valid in
the high-energy region, for example

√
s > 20 GeV [2]. We

shall return to this point in what follows. In this section
we first discuss in certain detail the empirical and formal
bases that lead to an almost model-independent analyt-
ical parameterization for the imaginary part of the am-
plitude in terms of both energy and momentum transfer
variables. We then treat the analytical evaluation of the
corresponding real part by means of derivative dispersion
relations and the analytical connections between pp and p̄p
scattering.

2.1 Parameterization for the imaginary part
of the amplitude

2.1.1 Empirical bases

Let us first investigate some empirical information on the
differential cross section, in the region of small momentum
transfer, q2 ≤ 0.2GeV2. In particular, it is known that, at
q2 = 0, the data indicate that |ρ(s)| ≤ 0.15, as illustrated in
Fig. 1. Therefore, it is expected that, at small values of the
momentum transfer, the amplitude F (s, q2) is to be dom-
inantly imaginary, so that the differential cross section in
this region can be expressed as

dσ

dq2
≈
1

16π

[
ImF (s, q2)

s

]2
.

Moreover, in this region, the differential cross section
data are approximately linear on a logarithm scale, as ex-
emplified in Fig. 2, which means that we can express the
imaginary part of the amplitude by

ImF (s, q2)

s
≈ αe−βq

2
,

where α and β are real parameters that can depend on the
energy and reaction considered.
The point now is to look for possible empirical de-

pendences for these parameters in terms of the energy s,
namely analytical expressions for α(s) and β(s), and that
is one of the novel aspects of this work. From the above two
equations and from (2) and (4) we have that α(s)∝ σtot(s)
and β(s) ∝ B(s). On the other hand, the empirical be-
havior of σtot(s) and B(s) (near the forward direction),
displayed in Figs. 3 and 4, respectively, indicates that in
the region of high energies the empirical trends of the data
(above

√
s ≈ 20GeV) follow polynomial dependences in

ln s, of second degree (total cross section) and first degree
(slope). For these reasons it is reasonable to introduce the
following empirical parameterizations for α(s) and β(s):

α(s) =A+B ln s+C ln2 s ,

Fig. 1. Dependence of ρ from pp and p̄p elastic scattering (data
from [3, 4])
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Fig. 2. Diffraction peak from pp elastic scattering at
√
s =

52.8 GeV [5]

Fig. 3. Experimental information on the pp and p̄p total
cross sections from accelerator [3] and cosmic-ray experiments
(see [6] for a complete list of references and discussions)

and

β(s) =D+E ln s ,

where A, B, C, D and E are real constants. We note that
a dimensionally necessary factor s0, in ln s/s0, is auto-
matically absorbed by the other constants. We also note
that the choice for α(s) is in agreement with the univer-
sal asymptotic behavior of the total cross sections from the
analysis developed by the COMPETE Collaboration [9].
Now, in the region of medium and large momentum

transfer, the differential cross section data is characterized
by the diffractive pattern, as illustrated in Fig. 5. Since we
have a logarithmic scale, this behavior can be taken into
account by the standard sum of exponentials in q2.
From the above discussion and aimed to treat both pp

and p̄p elastic scattering, we introduce the following empir-

Fig. 4. The slope parameter as function of the energy and de-
termined in the interval 0.01 < q2 < 0.20 GeV2 [7, 8]

Fig. 5. Proton–proton differential cross section data at
√
s =

52.8 GeV [5]

ical parameterizations for pp scattering:

ImFpp(s, q
2)

s
=

n∑
i=1

αi(s)e
−βi(s)q

2
, (5)

with

αi(s) =Ai+Bi ln(s)+Ci ln
2(s) ,

βi(s) =Di+Ei ln(s) , (6)

and for p̄p scattering:

ImFp̄p(s, q
2)

s
=

n∑
i=1

ᾱi(s)e
−β̄i(s)q

2
, (7)

with

ᾱi(s) = Āi+ B̄i ln(s)+ C̄i ln
2(s) ,

β̄i(s) = D̄i+ Ēi ln(s) , (8)
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where i= 1, 2, . . . , n. In what follows we shall check these
parameterizations in a formal context.

2.1.2 Constraints from axiomatic quantum field theory

Even after QCD, unitarity, analyticity, crossing and their
connections with axiomatic quantum field theory (AQFT)
still remain a fundamental theoretical framework in the
investigation of high-energy soft scattering. In this con-
text, important high-energy theorems and bounds have
been demonstrated [10–13], providing rigorous formal con-
straints in the region of asymptotic energies, which cannot
be disregarded in any reliable formalism, mainly related
with model-independent approaches. Since the parameter-
ization equations (5)–(8) were based exclusively on the be-
havior of the experimental data at fixed (finite) energies,
it is necessary to check the most important formal asymp-
totic results.
Firstly we note that from the optical theorem (2), the

parameterizations for αi(s) and ᾱi(s) do not violate the
Froissart–Martin bound, a rigorous prediction of quantum
field theory [14] which states that

σtot ≤ c ln
2 s ,

where c is a constant.
Another important result concerns the behavior of

the difference between particle–particle and antiparticle–
particle cross sections at the asymptotic regime. In this
context it has been demonstrated by Eden [10] and by
Grunberg and Truong [15] that if the Froissart–Martin
bound is reached, the difference between the pp and p̄p
total cross sections goes as

∆σ = σpptot−σ
p̄p
tot ≤ c

σpptot+σ
p̄p
tot

ln s
,

which means that the difference can increases at most as
ln s and even in this case,

σp̄ptot
σpptot
→ 1 ,

as s→∞ (the generalized or revised form of the Pome-
ranchuk theorem).
Now, from the optical theorem, (2) and the parameter-

izations (5)–(8) we have

∆σ =
n∑
i=1

{
(Ai− Āi)+ (Bi− B̄i) ln s+(Ci− C̄i) ln

2 s
}
,

and therefore, in order to not violate the above formal re-
sults, we must impose the constraint

n∑
i=1

(Ci− C̄i) = 0 . (9)

With this condition we also ensure another important for-
mal result, namely that if the Froissart–Martin bound

is reached the ρ parameter must go to zero logarithmi-
cally [16]

ρ(s→∞)∝
1

ln s
.

With the parameterizations (5)–(8) and the constraint (9)
we have 10n−1 free parameters, where n is the number
of exponentials. The novelty in these parameterizations is
the fact that the energy dependences are already enclosed
and were inferred from the empirical behavior of the ex-
perimental data, being also in agreement with the above
high-energy theorems. Moreover, the imaginary parts of
the amplitudes are entire functions of the logarithm of the
energy, which is an important property in the evaluation of
the real part, as discussed in what follows.

2.2 Analytical evaluation of the real part
of the amplitude

Connections between real and imaginary parts of the for-
ward scattering amplitude have been widely investigated
by means of dispersion relations in both integral and
derivative forms. In this work we make use of the derivative
relations [17, 18], which are valid in the forward direction
and for amplitudes belonging to a sub-class of entire func-
tions of the logarithm of the energy, as is the case here. For
a recent review and critical analysis on the replacement of
integral relations by derivative ones see [19], where a list of
references to some outstanding works can also be found.
In the forward direction, the derivative dispersion rela-

tions for even (+) and odd (−) amplitudes are expressed in
terms of a tangent operator and in the case of one subtrac-
tion (equal to two subtractions in the even case) they are
given by [17–19]

ReF+(s)

s
=
K

s
+tan

[
π

2

d

d ln s

]
ImF+(s)

s
, (10)

ReF−(s)

s
= tan

[
π

2

(
1+

d

d ln s

)]
ImF−(s)

s
, (11)

where K is the subtraction constant. It has also been
demonstrated by Fischer and Kolář [20] that at high ener-
gies the above tangent operator can be replaced by its first
order expansion, which is the case we are interested in.
Since besides the forward data we also aim to investi-

gate differential cross sections, it is necessary to consider
the applicability of the dispersion techniques beyond the
forward direction. Although several authors make use of
dispersion relations even for large values of the momen-
tum transfer, it is important to recall that what is formally
expected is the validity of the dispersion relations, with
a finite number of subtractions, inside a region q2 ≤ q2max.
However, the exact expression and/or numerical value of
q2max depends on the theoretical framework and scattering
process considered. We shall discuss this subject in some
detail in Sect. 3.2.2, when applying the formalism to the ex-
perimental data. Here we only consider a reference to this
limited interval.
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Based on the above arguments we shall make use of
the first order derivative dispersion relations, also extended
beyond the forward region, namely 0 ≤ q2 ≤ q2max, in the
form

ReF+(s, q
2)

s
=
K

s
+
π

2

d

d ln s

ImF+(s, q
2)

s
, (12)

ReF−(s, q
2)

s
=
π

2

(
1+

d

d ln s

)
ImF−(s, q

2)

s
. (13)

Finally, the connections between the hadronic and the
even/odd amplitudes is established through the usual
definitions:

Fpp(s, q
2) = F+(s, q

2)+F−(s, q
2),

Fp̄p(s, q
2) = F+(s, q

2)−F−(s, q
2). (14)

This approach is characterized by analytical results for
both real and imaginary parts of the pp and p̄p ampli-
tudes. Schematically, from the parameterizations (5)–(8)
for ImFpp/p̄p(s, q

2)/s we obtain ImF+/−(s, q
2)/s by in-

verting (14). Then the derivative relations (12)–(13) allow
one to evaluate ReF+/−(s, q

2)/s and by (14) we obtain the
hadronic real parts

ReFpp(s, q
2)

s
=
K

s

+
n∑
i=1

{
π

2

[
α′i(s)−αi(s)β

′
i(s)q

2
]
e−βi(s)q

2

+
π

4

[
αi(s)e

−βi(s)q
2
− ᾱi(s)e

−β̄i(s)q
2
]}
,

ReFp̄p(s, q
2)

s
=
K

s

+
n∑
i=1

{
π

2

[
ᾱ′i(s)− ᾱi(s)β̄

′
i(s)q

2
]
e−β̄i(s)q

2

−
π

4

[
αi(s)e

−βi(s)q
2
− ᾱi(s)e

−β̄i(s)q
2
]}
,

where the primes denote differentiation with respect to
ln s; see (6) and (8). With this we have analytical expres-
sions for the pp and p̄p differential cross sections:

dσpp/p̄p
dq2

=
1

16π

∣∣∣∣ReFpp/p̄p(s, q
2)

s
+i
ImFpp/p̄p(s, q

2)

s

∣∣∣∣
2

.

It should be noted that exact analyticity and crossing
properties demand symmetric variables, namely the lab-
oratory energy E for q2 = 0 and the variable (s−u)/4m,
where u is the Mandelstam variable, for q2 > 0 [2]. How-
ever, since E depends linearly on s and, as will be dis-
cussed in Sect. 3.2, we shall consider the applicability of
the formalism mainly in limited regions of the momen-
tum transfer and only above

√
s= 20GeV, the use of s as

variable does not introduce essential changes in the above
formulas.
Taking into account the subtraction constant K, the

constraint (9) and the parameterizations (5)–(8) we even-
tually have 10n fit parameters in the case of n exponen-
tial terms. This completes the analytical construction of
the formalism, characterized by its empirical basis, the es-
sentially model-independent parameterizations, the agree-
ment with high-energy theorems and the amplitudes be-
longing to the class of entire functions in the logarithm
of the energy. In the next section we determine the free
parameters involved through fits to the pp and p̄p elastic
scattering data.

3 Experimental data, fitting and results

3.1 Experimental data

The most important empirical input in our parameteriza-
tion is the energy dependence enclosed in the expressions of
α(s) and β(s), (6) and (8), respectively. Since it character-
izes the region where the total cross section increases with
the energy, we shall consider here only the experimental
data available above

√
s= 20GeV from pp and p̄p scatter-

ing. We note that this necessary threshold puts limitations
in extensions of the formalism to other reactions, such as
π±p, K±p, . . . , due to the small number of experimental
data available.
For the forward data on σtot and ρ, we use the Par-

ticle Data Group archives [3], to which we added the value
of ρ and σtot at 1.8 TeV obtained by the E811 Collabora-
tion [4]. The statistical and systematic errors were added in
quadrature.We did not include the cosmic-ray information
on the pp total cross sections due to the model dependences
involved [6].
The differential cross section data include the optical

point, [
dσ(s, q2)

dq2

]
q2=0

=
σ2tot(1+ρ

2)

16π
, (15)

and the data above the Coulomb–nuclear interference re-
gion, namely q2 > 0.01GeV2. The data include 12 sets
from pp scattering, at

√
s= 23.5, 27.4, 30.7, 44.7, 52.8, and

62.5GeV and from p̄p scattering, at
√
s = 31, 53, 61, 546,

630 and 1800GeV. The pp data at 27.4 GeV, covering the

region 5.5≤ q2 ≤ 14GeV2 , are from [21]. The p̄p differen-
tial cross section data at 1.8 TeV include those obtained by
the E710 Collaboration [8] (0.045≤ q2 ≤ 0.627GeV2) and
by the CDF Collaboration [22] (0.035≤ q2 ≤ 0.285GeV2).
In this case we used two optical points with the values of
σtot and ρ from [4] (E811 Collaboration) and [8] (E710 Col-
laboration). The complete list of references to the other
data sets can be found in [1] ([26, 28–31]). In all these
sets the experimental errors correspond to the statistical
ones.
We note that we have used all the experimental data

referred to before, that is, we did not perform any kind of
data selection in the above standard ensemble.
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3.2 Fitting and results

As recalled in Sect. 2.2, the applicability of the disper-
sion relations, outside the forward direction, depends on
the maximum value of the momentum transfer considered.
For this reason, we shall treat separately fits to only for-
ward quantities, σtot and ρ, and simultaneous fits to these
quantities plus the differential cross section data. We first
present the fits to the forward data and next discuss the ap-
plicability of the dispersion techniques beyond the forward
direction.

3.2.1 Fits to the forward scattering data

Making use of the formalism described in Sect. 2, we per-
formed simultaneous fits to σtot and ρ data, above 20 GeV,
from pp and p̄p scattering. Since we are treating here only
forward data (q2 = 0), the sole parameters involved are
those associated with αi(s) and ᾱi(s) in (6) and (8).
The fits were performed through the CERN-Minuit

code, with the estimated errors in the free parameters cor-
responding to an increase of the χ2 by one unit. For this en-
semble of data good statistical results were obtained with
only one exponential factor (n= 1 in (5) and (7)) and the
best fit indicated χ2/DOF = 1.07 for 83 degrees of free-
dom. The constraint (9) in this case reduces to C1 = C̄1
and the fit indicated a value of the subtraction constant
compatible with zero. The numerical results are displayed
in Table 1 and the corresponding curves, together with the
experimental data analyzed, are shown in Fig. 6.
These results will be discussed in detail in Sect. 4, but

we note here the good quality of the fit in terms of the
χ2/DOF and also the small number of free parameters in-
volved: 5.We also note a crossing in the total cross sections,
with σpptot becoming higher than σ

p̄p
tot above

√
s≈ 100GeV,

and a similar effect is predicted for ρ(s). As we recalled in
Sect. 2.1, these behaviors do not violate any high-energy
theorem on elastic hadron scattering. However, the result
for ρp̄p(s) is below the experimental data available at the
highest energies. We shall discuss this effect in Sect. 4.2.

3.2.2 Fits beyond the forward direction

We now consider simultaneous fits to σtot(s), ρ(s) and
dσ(s, q2)/dq2, from pp and p̄p scattering. As recalled be-
fore, although dispersion relations have been used even in
the region of medium and large momentum transfer (see,
for example, [18, 23–26]), an important point concerns the
exact region in the q2 variable inside which dispersion re-
lations hold. In what follows we first review some formal
results involved which show us that, in the case of pp and
p̄p scattering (and nucleon–nucleon in general), the situ-
ation is not simple or neat. Based on these results we shall
infer a reasonable strategy, not proved to be wrong, that
will allow us to develop simultaneous fit procedures in-
cluding the differential cross section data. Note that, since
we are treating with a sub-class of entire functions in the
logarithm of the energy, the discussion that follows ap-
plies equally well to both integral and derivative dispersion
relations [19].

Table 1. Results of the simultaneous fits to σtot and ρ from pp
and p̄p scattering. All the parameters are in GeV2, χ2/DOF =
1.07 for 83 degrees of freedom and C1 = C̄1

pp scattering p̄p scattering

A1 121.9 ± 2.7 Ā1 140.8 ± 3.6
B1 −9.82 ± 0.72 B̄1 −11.78 ± 0.86
C1 1.036 ± 0.049 C̄1 1.036 ± 0.049

Fig. 6. Fit results to the forward data, σtot and ρ, from pp and
p̄p scattering

Analyticity in q2. Dispersion relations are connected with
the unitarity and analyticity properties of the amplitude.
Recently, the axiomatic approach to high-energy hadron
scattering, as well as the rigorous analyticity–unitarity
program have been nicely reviewed in the excellent papers
by Vernov and Mnatsakanova [12] and Martin [13], where
a complete list of references and credits to outstanding re-
sults and authors can be found. For this reason, based on
these works, we shall only summarize and quote here the
results, and as we understand it, give an updated view on
the q2-interval inside which dispersion relations hold. The
results are the following.

1. For meson–meson and meson–nucleon scattering, a
rigorous formalism based on local field theory allows
one to prove that dispersion relations are valid in fi-
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nite intervals of the momentum transfer. For example,
q2max = 32m

2
π/3≈ 0.2GeV

2 in the case of πN scatter-

ing [12] and q2max = 28m
2
π ≈ 0.55GeV

2 in the case of ππ
scattering [13].

2. Similar intervals can be deduced for other processes,

like γ+N → γ+N (�), γ+N → π+N (�) , e+N → e+
π+N (�) [13].

3. In the formal analyticity–unitarity context there seems
to be no results for nucleon–nucleon scattering. How-
ever, a limit q2max =m

2
π/4≈ 0.005GeV

2 can be inferred
from perturbation theory [13].

4. The reason why elastic pp and p̄p amplitudes “lack the
usual analytical properties is that the cut in the com-
plex s plane starts from s0 = 4m

2 (due to the virtual
annihilation process), while the physical region of p̄p
scattering starts from s1 = 4M

2” [12]. Here m corres-
ponds to the pion mass andM to the proton mass.

5. In the context of the double-dispersion representation
by Mandelstam [27], the domain in the q2 variable, in-
side which dispersion relations hold for a process m+
m→m+m, extends up to q2max = 9m

2 [28]. Although
the original approach treated only pion–pion scatter-
ing, one point to stress is the fact that for all mass cases
this representation was never proved nor disproved in
the contexts of the axiomatic field theory or perturba-
tion theory [13].

We also recall that fixed-q2 dispersion relations for
nucleon–nucleon scattering have been used by Kroll and
co-authors [24, 25] and in particular, in [24], pp and p̄p scat-
tering were investigated through dispersion relations in the
region 0≤ q2 ≤ 3 GeV2. However, there is no reference to
a formal numerical value for q2max.
These are the results we have found and compiled on

the applicability of dispersion relations beyond the forward
direction. We understand that the quoted bound from per-
turbation theory seems too unreliable to be considered in
the case of a soft processes like elastic pp and p̄p scattering.
A second aspect concerns the fact that, in the context of
the axiomatic field theory, the Mandelstam representation
for all mass cases was never proved to be incorrect (or cor-
rect either). If the representation can be extended to the pp
and p̄p case, the analyticity domain could cover the region
up to q2max = 9m

2
p ≈ 8 GeV

2.

Strategies and fits. Based on the above information, we
understand that it can be instructive to perform tests on
distinct values for q2max and investigate the consequences
in the description of the bulk of the experimental data on
σtot(s), ρ(s) and dσ(s, q

2)/dq2, from pp and p̄p scattering.
Since the typical mass scale in the hadronic scattering is
the proton mass (which is also expected to represent an in-
terface between soft and semihard processes), it may be
reasonable and perhaps even conservative to consider some
bounds q2max inside the region 1–2 GeV

2.Moreover, it seems
also important to address the practical applicability of the
dispersion approach at medium and large values of the mo-
mentum transfer by taking into account all the differential
cross section data available, namely, q2max = 14GeV

2. De-
spite the lack of a formal justification for this extreme case,

Table 2. Statistical information on the fit results to σtot, ρ and
dσ/dq2 data from pp and p̄p scattering in different intervals of
the momentum transfer variable

q2max in GeV
2 NDOF χ2/DOF

1.0 923 2.476
1.5 1003 2.909
2.0 1064 2.881
14.0 (all data) 1277 2.829

we understand that it may also be useful to get some addi-
tional information on the regionswhere dispersion relations
work, even if only in a strictly phenomenological context.
It is important to stress that the strategy to consider dif-
ferent values for q2max is only an ansatz and that the main
point in favor of this hypothesis is the fact that there is no
formal proof against it, or in other words, we understand
that it should not constitute a serious formal drawback.
Based on the above discussion, we shall consider four vari-
ants for the fits by selecting differential cross section data
up to q2max = 1.0, 1.5, 2.0 and 14GeV

2. As before, the fits
were performed through theMinuit code. For this ensemble
of data, independently of the value considered for q2max, the
best results demanded three exponential terms in the imag-
inary part of the amplitude and therefore 30 free parameters
to be fitted. The constraint (9) was taken into account by
definingC1 = C̄1+ C̄2+ C̄3−C2−C3.
The χ2 information on each of the four variants con-

sidered is displayed in Table 2. We note that the χ2/DOF
lies in the interval 2.5–3.0 for a number of degrees of free-
dom equal or greater than 923. It is important to mention
that these values are typical of global fits to the experi-
mental data on σtot(s), ρ(s) and dσ(s, q

2)/dq2, from pp
and p̄p scattering [29]. The “large” values are the conse-
quences of several points in the differential cross sections
that lie outside a normal distribution, as well as different
normalizations from different experiments in distinct kine-
matic intervals. As commented before, we did not perform
any kind of data selection. In fact, despite the large values
of the χ2/DOF, the visual description of the experimental
data is good in all the cases investigated. In particular we
display here the results for q2max = 2GeV

2, which we under-
stand can be considered a conservative case (in agreement
with the expected analyticity interval in terms of the mo-
mentum transfer) and for q2max = 14GeV

2. The values of
the free parameters in both cases are shown in Table 3 and
the corresponding curves together with the experimental
data analyzed in Figs. 7 and 8 (q2max = 2GeV

2) and Figs. 9
and 10 (q2max = 14GeV

2). We see that the description of all
the differential cross section data is quite good, even in the
extreme case q2max = 14GeV

2.

4 Discussion

In this section we first summarize the main results we have
obtained and then proceed with a discussion of their physi-
cal implications and their applicabilities in the experimen-



178 R.F. Ávila et al.: Phenomenological analysis connecting proton–proton and antiproton–proton elastic scattering

Table 3. Results of the simultaneous fits to σtot, ρ and dσ/dq
2 from pp and p̄p scattering, with differential cross section data up

to q2max = 2.0 GeV
2 and q2max = 14GeV

2, for whichK = 49.7±1.7 andK =−0.1053±0.0048, respectively. All the parameters are
in GeV2 and C1 = C̄1+ C̄2+ C̄3−C2−C3

pp scattering p̄p scattering

q2max = 2.0 GeV
2 q2max = 14 GeV

2 q2max = 2.0 GeV
2 q2max = 14GeV

2

A1 91.13±0.28 109.70±0.28 Ā1 119.61±0.44 112.28±0.44
B1 −12.939±0.039 −16.529±0.039 B̄1 −2.486±0.073 −0.468±0.074
C1 constrained constrained C̄1 −0.0174±0.0038 −0.1673±0.0039
D1 −7.79±0.33 −8.91±0.32 D̄1 3.134±0.067 3.170±0.069
E1 2.908±0.051 3.045±0.050 Ē1 0.4884±0.0078 0.4860±0.0082
A2 16.82±0.22 −4.06±0.23 Ā2 14.51±0.15 10.23±0.15
B2 7.071±0.030 11.387±0.030 B̄2 −6.730±0.024 −6.756±0.027
C2 0.3027±0.0047 0.0952±0.0047 C̄2 0.9035±0.0027 0.9613±0.0029
D2 1.647±0.014 1.290±0.014 D̄2 −1.549±0.011 −1.476±0.013
E2 0.4646±0.0022 0.5097±0.0023 Ē2 0.5521±0.0011 0.5645±0.0012
A3 0.2582±0.0049 1.0554±0.0077 Ā3 −17.160±0.055 −8.148±0.031
B3 −0.09894±0.00074 −0.3607±0.0013 B̄3 2.6083±0.0060 1.2313±0.0040
C3 0.5921E-02±0.0070E-02 0.02372±0.00012 C̄3 −0.11298±0.00038 −0.05572±0.00025
D3 0.303±0.019 0.6454±0.0081 D̄3 1.5672±0.0084 0.9272±0.0072
E3 0 0.0176±0.0011 Ē3 0 0.03859±0.0011

Fig. 7. Differential cross sections from global fits to pp and p̄p
data with q2max = 2GeV

2. Curves and data were multiplied by
factors of 10±2

tal and phenomenological contexts. By means of a novel
essentially model-independent analytical parameterization
for the scattering amplitude and fits to physical quanti-

Fig. 8. Total cross section and ρ from global fits to pp and p̄p
data with differential cross section data up to q2max = 2GeV

2

ties that characterize the elastic pp and p̄p scattering, we
have developed a predictive formalism in the variables s
and q2 that has only empirical and formal bases. The ap-
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Fig. 9. Differential cross sections from global fits to pp and p̄p
data with q2max = 14GeV

2 (all differential cross section data).
Curves and data were multiplied by factors of 10±2

proach is intended for the high-energy region, specifically
above

√
s= 20GeV (in order to guarantee the empirical en-

ergy dependences). We first considered global fits to only
the forward data, σtot and ρ, for which dispersion relations
can be formally applied. We then included the differential
cross section data and discussed strategies for the use of
the dispersion relations, namely fits in different intervals in
the momentum transfer variable: q2max = 1.0, 1.5, 2.0 and
14 GeV2 (all data). The main point is the fact that there
is no formal proof against these assumptions. Although we
have displayed here only the results for q2 = 0, q2max = 2
and q2max = 14GeV

2, in all the cases investigated we have
obtained good descriptions of the experimental data ana-
lyzed. As commented before, we consider the results with
q2max = 14GeV

2 as an illustrative example on the practi-
cal applicability of the dispersion relations at medium and
large values of the momentum transfer. However, a striking
feature is the high quality of the data description reached
in this case, as shown in Figs. 9 and 10.
In what follows, we discuss the applicability of the phys-

ical results in the experimental and phenomenological con-
texts. In the former case we shall consider processes that
are being investigated or planned to be treated in acceler-
ator experiments, referring to the following three cases: (1)
pp scattering at

√
s= 200GeV, that was investigated and

Fig. 10. Total cross section and ρ from global fits to pp and
p̄p data with q2max = 14 GeV

2 (all the differential cross section
data)

might yet be investigated by the pp2pp Collaboration at
the Brookhaven RHIC; (2) p̄p scattering at

√
s= 1.96 TeV,

that is being analyzed by the DZero Collaboration at the
Fermilab Tevatron (RUN II); and (3) pp scattering at√
s= 14TeV, planned to be investigated by the TOTEM
Collaboration at the CERN LHC. In the phenomenologi-
cal context we shall make reference to some popular models
which are, at the same time, representatives of different
pictures to high-energy soft diffraction. To this end we will
limit the discussion here only to the models by Desgrolard,
Giffon and Predazzi (DGP) [29], Bourrely, Soffer and WU
(BSW) [30], Donnachie and Landshoff (DL) [31], Block,
Gregores, Halzen and Pancheri (BGHP) [32] and the odd-
eron concept, introduced by Lukaszuk and Nicolescu [33].
We shall focus our discussion on the predictions ob-

tained for q2 = 0 (forward data only), q2max = 2GeV
2 and

q2max = 14GeV
2. Also, we treat separately the results for

the total cross section, the ρ parameter and the differential
cross section, obtained from the above three variants of the
fit procedure.

4.1 Total cross section

In the three fit variants, the results indicate a crossing
with σpptot becoming greater than σ

p̄p
tot. However, the cross-
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Table 4. Predictions for σtot(s) and ρ(s) from fits to only forward data (q
2 = 0) and

including the differential cross section data (q2max = 2GeV
2 and q2max = 14GeV

2)

Process q2 = 0 q2max = 2GeV
2 q2max = 14 GeV

2

σtot (mb) ρ σtot (mb) ρ σtot (mb) ρ

pp,
√
s= 200 GeV 52.27 0.1532 51.32 0.1439 51.12 0.1065

p̄p,
√
s= 1.96 TeV 78.05 0.1114 75.74 0.1124 75.24 0.1343

pp,
√
s= 14 TeV 121.6 0.1964 107.5 0.1321 105.4 0.1365

ing point depends on the q2-interval of the differential
cross section data considered in the fit:

√
s≈ 100GeV for

q2 = 0, ≈ 500 GeV for q2max = 2GeV
2 and ≈ 3 TeV for

q2max = 14GeV
2 as shown in Figs. 6, 8 and 10, respectively.

That is, asymptotically, the difference ∆σ = σp̄ptot−σ
pp
tot

does not goes to zero and as recalled in Sect. 2.1, this be-
havior is not in disagreement with formal results obtained
in the context of axiomatic field theory.
Among the models quoted, this result suggest a dom-

inant contribution of the odderon [33] at the highest en-
ergies. We stress that the only information we have in-
troduced in our parameterization was the empirical fact
that the pp and p̄p total cross sections increase at most
as ln 2s (parameterizations for αi(s) and ᾱi(s) in (6) and
(8)) and that the difference may increase at most as ln s
(constraint (9)).
In particular, at

√
s = 1.80 TeV, the experimental re-

sults for σp̄ptot are characterized by the well known discrep-
ancies between the values reported by the E811 and E710
Collaborations [4, 8] and that reported by the CDF Collab-
oration [34]. In this respect, except for the forward fit result
for σp̄ptot, which lies between the discrepant points Fig. 6,
the predictions including the differential cross section data
favor the E811/E710 results (Figs. 8 and 10).
In Table 4 we present our numerical predictions for

the total cross sections in the case of the experiments
referred to before. For pp scattering at 14 TeV (LHC)
our results with q2max = 2GeV

2 and q2max = 14GeV
2 are

in agreement, respectively, with the predictions from the
BGHP model (σtot = 108.0± 3.4mb) [32] and from the
BSW model (σtot = 103.5mb) [30]. However, it should be
noted that these models do not distinguish pp and p̄p scat-
tering at asymptotic energies. The table also contains the
results for ρ(s), to be discussed in what follows.

4.2 The ρ parameter

As a consequence of the connections between real and
imaginary parts of the amplitudes via dispersion relations,
similar effects appear in our results for ρ(s), as shown in
Figs. 6, 8 and 10: ρpp(s) becomes greater than ρp̄p(s) above√
s ≈ 80GeV(q2 = 0), ≈ 200GeV(q2max = 2GeV

2) and ≈
2 TeV(q2max = 14GeV

2). In all the cases the constraint (9)
assures the asymptotic behavior as 1/ ln s for both pp and
p̄p scattering.
As in the case of the total cross section, these results are

in agreement with the odderon dominance at the highest
energies. A crossing in ρ(s) with ρpp(s) becoming greater

than ρp̄p(s) is also predicted in one of the versions of the
DGP model [29] and in the analysis of [6], which includes
cosmic-ray information on σpptot and a model-dependent pa-
rameterization with odderon contribution.
Differently from the results for the total cross sec-

tions, we note here some distinct characteristics between
the predictions for ρ(s) obtained with only the forward
data (Fig. 6) and those including the differential cross sec-
tion data up to q2max = 2GeV

2 (Fig. 8) and q2max = 14GeV
2

(Fig. 10). In the former case the curve for ρp̄p(s) lies be-
low the highest p̄p data, which does not occur when the
differential cross section data are included. We have real-
ized that this effect (Fig. 6 and partially in Fig. 8) is due to
the large error bars of the experimental data at 1.8 TeV and
also to the small number of ρ data from p̄p scattering above
20GeV. In fact, at

√
s= 1.8 TeV, the experimental values

are ρE811 = 0.132±0.056 [4] and ρE710 = 0.140±0.069 [8],
corresponding to relative errors of 42% and 49%, respec-
tively. For example, if we use the same central values and
reduce the errors to 10%, the same fit leads to a curve
that passes through the central values. However this is
only technical information that certainly has nothing to
do with a physical result in the context of our analysis.
Experimentally it is known that, as the energy increases,
it is very difficult to reach the Coulomb–nuclear interfer-
ence region, from which the ρ parameter is extracted [2].
Therefore there is not expected an improvement in these
experimental values, unless some novel technique could be
developed. In this respect, the above effect, at the highest
energies, cannot be eliminated in the present formulation
and fit procedure, constituting, therefore, a drawback in
our analysis, when only forward data are considered. How-
ever, comparison of Figs. 6, 8 and 10 shows an interesting
effect: the quality of the visual description of the ρ data at
the highest energies is improved with the addition of the
differential cross section information.
The numerical predictions for ρ(s), in the case of the ex-

periments referred to before, and from the three fit variants
(q2 = 0, q2max = 2GeV

2 and q2max = 14GeV
2) are displayed

in Table 4.

4.3 Differential cross section

As we have shown, the descriptions of the pp and p̄p differ-
ential cross section data analyzed are quite good for q2max =
2GeV2 (Fig. 7) and even in the case of q2max = 14GeV

2

(Fig. 9). In this subsection we discuss the applicability of
these results in the experimental and phenomenological
contexts.
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Fig. 11. Predictions for the differential cross sections at the
RHIC, Tevatron and LHC energies from fits including the dif-
ferential cross section data up to q2max = 2GeV

2 (Table 5). The
upper and lower curves were multiplied by 103 and 10−3, re-
spectively

To the extent that our analysis can be considered
model-independent and predictive, it may be instructive
to detail the results for the experiments referred to in the
beginning of this section. Our predictions for these pro-
cesses, from the global fit including the differential cross
section data up to q2max = 2GeV, are shown in Fig. 11,
and the corresponding numerical results, in the region
0–2 GeV2, are displayed in Table 5 for some values of the
momentum transfer. From Fig. 11 we note the presence of
a dip at q2 ≈ 1.2GeV2 for pp scattering at 200GeV and
that the diffraction pattern becomes a shoulder at higher
energies for both p̄p (

√
s = 1.96 TeV) and pp scattering

(
√
s= 14TeV); we also note the shrinkage of the diffraction

peak as the energy increases.

4.3.1 Experimental aspects

As examples of practical use of these predictions in the
experimental context, let us discuss the recent determina-
tions of the slope parameter from elastic rates measured by
the pp2pp Collaboration (pp scattering at

√
s= 200GeV)

at the RHIC [35] and the preliminary results obtained by
the DZero Collaboration (p̄p scattering at

√
s= 1.96 TeV)

at the Tevatron [36]. Operationally, the differential cross
section is expressed by

dσ

dq2
=
1

L

dN

d q2
,

where dN/dq2 is the rate of the elastic interactions and
L the machine luminosity. Due to uncertainties in the de-
termination of L the above quoted experiments have ex-
tracted only the slope of the elastic rates, that is, the
corresponding differential cross section could not yet be
determined. In what follows we present our results for
the corresponding slopes and discuss ways to contribute
with a possible reasonable normalization of the elastic
rates.

pp at
√
s = 200GeV. In the case of the pp2pp experiment,

the slopeB was obtained from the elastic rates measured in
the q2 range 0.010≤ q2 ≤ 0.019GeV2. The corresponding
amplitude has contributions from the Coulomb amplitude,
nuclear amplitude and the interference between them, and
it is parameterized by [35]

dσ

dt
= 4π(h̄c)2

(
αG2E
t

)2
+
1+ρ2

16π(h̄c)2
σ2tote

−B|t|

− (ρ+∆Φ)
αG2E
|t|
σtote

−12B|t| .

The fit parameters are the slope B and a normalization
constant (elastic rates). The input values for σtot and
ρ used by the authors were 51.6mb (obtained from the
Donnachie–Landshoff model) and 0.13 (fit by the UA4/2
Collaboration), respectively. The resulting slope param-
eter was

B = 16.3±1.6 (stat.) ±0.9 (syst.) GeV−2.

Adding in quadrature the error reads ±1.8GeV−2. From
Fig. 4 we can see that this experimental value of the slope
is above the general trend of the other measurements, even
from p̄p scattering. This effect is due to the small values
of the momentum transfer in which the measurement has
been performed, namely lower than those in the other ex-
periments and also because the interval is in the limit of
the Coulomb–nuclear interference region (q2 ≈ 0.01GeV2).
Since the pp data we have analyzed cover the region only up
to
√
s= 62.5GeV and above q2 = 0.01GeV2 (except for the

optical point), it is an important test to check our predic-
tions for the above quantity.
To this end, from the fit with q2max = 2GeV

2 and based
on the experimental procedure [35], we have generated
19 differential cross section points, with estimated error
of 1%, in the region 0.010≤ q2 ≤ 0.019GeV2 and fitted
the points with an exponential form in the momentum
transfer:

dσ

dq2
=Ae−Bq

2
, (16)

as shown in Fig. 12. With this procedure we have obtained

A= 136.0±1.7mbGeV−2 ,

B = 14.46±0.84GeV−2 ,

with χ2/DOF = 4.8×10−5 for 17 degrees of freedom.
Therefore, our result for the slope is in agreement with
the experimental value, lying inside the lower error bar in
the case that statistical and systematic errors are added
in quadrature. The relative error with respect to the cen-
tral value is 11%. Moreover, the input value used by the
pp2pp Collaboration, σpptot = 51.6mb, is also in agreement
with our predictions for the cross section, as shown in
Table 4, namely 51.32mb. We also note that, although our
results indicate ρ= 0.1439, which is higher than the input
ρ= 0.13, this difference has no practical effect on the nu-
clear contribution in (16), since this parameter appears in
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Fig. 12. Determination of the slope by means of an exponen-
tial fit, (16), to the generated differential cross section points,
for q2max = 2GeV

2

the form 1+ρ2. However that is not the case for the total
cross section which has a quadratic contribution: σ2tot. We
understand that these results corroborate the accuracy of
our predictions and in this sense, the above value we ob-
tained for the parameter A could be used as a suitable
normalization factor in the estimation of the corresponding
differential cross section.

p̄p at
√
s = 1.96 TeV. Now let us discuss the recent meas-

urements (even if preliminary) of the elastic rates per-
formed by the DZero Collaboration, from p̄p scattering at√
s = 1.96 TeV [36]. In this case, the rate of elastic colli-
sions has been measured at medium values of the momen-
tum transfer, in the interval 0.96< q2 < 1.31GeV2 [37].
As an illustration, and for further discussion, our predic-
tions for the differential cross section at

√
s= 1.96 TeV and√

s= 1.80 TeV, with q2max = 2GeV
2 are shown in Fig. 13 to-

gether with the experimental data, obtained by the E710
and CDF Collaborations, at

√
s = 1.80GeV. In principle,

the elastic rates at 1.96 TeV could be compared with the
differential cross section data at 1.80 TeV, allowing for
a kind of normalization. However, from Fig. 13, we see that
the E710 data cover the region only up to q2 = 0.627GeV2

and the main problem is the fact that in the gap between
this last point and the first DZero point (q2 ≈ 0.96GeV2)

Fig. 13. Prediction for the p̄p differential cross section at
√
s=

1.96 TeV and
√
s = 1.80 TeV, for q2max = 2GeV

2, together with
the experimental data at

√
s= 1.80 TeV

the presence of a dip or a shoulder is expected, imply-
ing, in any case, a change of curvature. What is worst, the
E710 point at q2 = 0.627GeV2 has a large error bar (not
shown in the figure, but taken into account in all the fits),
making very difficult, in our opinion, any attempt to per-
form a reasonable normalization. In this respect, looking
for more quantitative information and, as before, from the
fit with q2max = 2GeV

2 and based on the experimental pro-
cedure [37], we have generated 8 differential cross section
points with errors of 1%, in the region 0.95≤ q2 ≤ 1.3 GeV2

and fitted the points with the exponential form, as shown
in Fig. 12. In this case we have obtained

A= 0.123±0.004mbGeV−2 ,

B = 3.554±0.030GeV−2 ,

with χ2/DOF= 2.52 for 6 degrees of freedom.We note that
a close looking at the generated points in Fig. 12 shows that
the last four points have a slope slightly greater than the
first four points and this effect seems also to be present
in the measured elastic rates [36, 37]. Although the experi-
mental data are still being analyzed by the DZero Collabo-
ration, we understand that the above information and the
numerical results displayed in Table 5 can contribute with
the discussion on a suitable normalization for these elastic
rates. We shall return to this point in what follows.

4.3.2 Phenomenological aspects

We now turn the discussion to the phenomenological con-
text, with main focus on the result we have obtained for
the highest energy with differential cross section data avail-
able, namely p̄p scattering at

√
s = 1.80 TeV; see Fig. 13.

The point is to compare this result with predictions from
the models referred to in the beginning of this section.
From Fig. 13, our result indicates a change of curva-

ture in the region of the last three experimental points
(q2 ≈ 0.55–0.65GeV2) with a shoulder shape and not a dip
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Table 5. Predictions for the differential cross sections in mbGeV−2 at the
RHIC, Tevatron and LHC energies, from global fits including the differen-
tial cross section data up to q2max = 2.0 GeV

2

q2 in GeV2 pp,
√
s= 200 GeV p̄p,

√
s= 1.96 TeV pp,

√
s= 14 TeV

0.00 136.24 298.18 602.87
0.01 117.66 251.98 470.45
0.05 66.649 129.03 190.54
0.10 33.576 56.399 65.903
0.15 17.144 24.839 23.222
0.20 8.8167 10.982 8.2384
0.25 4.5585 4.8519 2.9339
0.30 2.3699 2.1307 1.0537
0.35 1.2400 0.92503 0.39265
0.40 0.65358 0.39539 0.16557
0.45 0.34731 0.16687 0.090879
0.50 0.18607 0.071284 0.067705
0.55 0.10042 0.033293 0.060450
0.60 0.054478 0.019393 0.057098
0.65 0.029605 0.014952 0.054020
0.70 0.016034 0.013790 0.050435
0.75 0.0085958 0.013451 0.046423
0.80 0.0045185 0.013078 0.042242
0.85 0.0022989 0.012456 0.038117
0.90 0.0011103 0.011606 0.034201
0.95 0.00049312 0.010614 0.030578
1.00 0.00018982 0.0095647 0.027284
1.05 5.5411E-05 0.0085216 0.024324
1.10 8.5222E-06 0.0075277 0.021686
1.15 3.9878E-06 0.0066078 0.019345
1.20 1.7294E-05 0.0057734 0.017276
1.25 3.5677E-05 0.0050275 0.015449
1.30 5.2974E-05 0.0043677 0.013838
1.35 6.6641E-05 0.0037883 0.012417
1.40 7.6041E-05 0.0032825 0.011164
1.45 8.1462E-05 0.0028425 0.010058
1.50 8.3576E-05 0.0024608 0.0090810
1.55 8.3151E-05 0.0021304 0.0082164
1.60 8.0907E-05 0.0018448 0.0074507
1.65 7.7458E-05 0.0015981 0.0067714
1.70 7.3291E-05 0.0013851 0.0061679
1.75 6.8779E-05 0.0012013 0.0056310
1.80 6.4189E-05 0.0010426 0.0051523
1.85 5.9707E-05 0.00090562 0.0047250
1.90 5.5453E-05 0.00078734 0.0043428
1.95 5.1497E-05 0.00068517 0.0040002
2.00 4.7875E-05 0.00059687 0.0036928

(minimum) with defined position. This effect is due to the
contribution from the real part of the amplitude as shown
in Fig. 14, where we display separately the contributions to
the differential cross section from only the real and only the
imaginary parts of the amplitudes in the cases of q2max =
2GeV2 and q2max = 14GeV

2. From this figure we see that,
as expected, the imaginary part presents a zero (change of
sign) and inside this region, the value of the minimum in
the differential cross section is due to the contribution of
the real part (a shoulder in this case). The real part of the
amplitude also presents a zero at q20 ≈ 0.30GeV

2 in the case
of q2max = 2GeV

2 and q20 ≈ 0.38 GeV
2 for q2max = 14GeV

2.

These results for the real part are in agreementwith a theo-
rem demonstrated by Martin, which states that the real
part changes sign at q2 > 0.1GeV2 [38].
On the other hand, the contributions from the imagi-

nary parts are very similar in both cases, indicating a zero
at q20 ≈ 0.70GeV

2 for q2max = 2GeV
2 and at q20 ≈ 0.73GeV

2

for q2max = 14GeV
2. Therefore, from this figure, we can

infer with some certainty that the position of the first min-
imum in the differential cross section at this energy occurs
at q20 = 0.70GeV

2 (q2max = 2GeV
2). In the phenomenologi-

cal context this value is in agreement with the predictions
of the DGP, BSW and DL models, but not with that from
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Fig. 14. Contributions to the p̄p differential cross section at√
s = 1.80 TeV from the real (solid) and imaginary (dashed)
parts of the amplitude for q2max = 2GeV

2 and q2max14 GeV
2

the BGHP model, since the minimum in this model is pre-
dicted to be at q20 ≈ 0.60 GeV

2 (coincident with the highest
E710 point). We think that this is an important point that
should be carefully analyzed, when comparing elastic rates
with model predictions at

√
s= 1.96 TeV.

Another aspect to note in Fig. 14 is that, in both cases,
the contribution of the imaginary part dominates in the
region of small momentum transfer, up to the beginning
of the shoulder. On the other hand, in this region and for
higher values of the momentum transfer, it is the contribu-
tion of the real part that dominates. However, in order to
investigate this effect in more detail, we must consider the
region of medium and large momentum transfer, that is,
the results of the fits with q2max = 14GeV

2. We stress that,
even under restrictive formal justification, our results tak-
ing into account all the differential cross section data are
quite good, as shown in Fig. 9, and therefore it may be in-
structive to discuss the implications of this variant of the
fit.
Concerning the contributions to the differential cross

sections from the real and the imaginary parts of the ampli-
tude, we consider three typical examples: the results for pp
scattering at 52.8GeV and p̄p at 53GeV, shown in Fig. 15,
and those for p̄p at 546GeV, displayed in Fig. 16, together
with the corresponding experimental data. The point is

Fig. 15. Contributions to the differential cross section from the
real (solid) and imaginary (dashed) parts of the amplitude for
q2max = 14 GeV

2

Fig. 16. Contributions to the differential cross section from the
real (solid) and imaginary (dashed) parts of the amplitude for
q2max = 14 GeV

2

that, according to our predictions, in the energy region
of the CERN ISR (

√
s ≈ 23–63 GeV), the imaginary part

dominates at medium and large values of the momentum
transfer (Fig. 15). On the other hand, at higher energies,
such as the regions of the CERN Collider (Fig. 16) and
Tevatron (Fig. 14), it is the contribution from the real part
that dominates.
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Fig. 17. Predictions for the differential cross sections at the
RHIC, Tevatron and LHC energies from fits including the dif-
ferential cross section data up to q2max = 14GeV

2 (all data).
The upper and lower curves were multiplied by 103 and 10−3,
respectively

Finally, it may also be instructive to see what kind of
results can be predicted in the region of large momentum
transfer at the RHIC, Tevatron and LHC energies. We dis-
play these in Fig. 17 up to q2 = 8GeV2, the interval gener-
ally considered in the publications. The main point here is
the prediction of a smooth decrease of the differential cross
section above the first minimum, without secondary struc-
tures in this region. Among the quoted phenomenologi-
cal approaches, this behavior is predicted only in the DL
model. However, we note from Fig. 9 that a small change in
the curvature is predicted at q2 ≈ 12GeV2.

5 Conclusions and final remarks

We have introduced an analytical parameterization for the
elastic hadron–hadron scattering amplitude and a fit pro-
cedure characterized by at least five important novel as-
pects: (1) the parameterization is almost model-indepen-
dent, with enclosed dependences on the energy and mo-
mentum extracted from the empirical behavior of the ex-
perimental data and in agreement with some high-energy
theorems and bounds from AQFT; (2) the real and imagi-
nary parts of the amplitude are entire functions of the loga-
rithm of the energy s and are connected through derivative
dispersion relations; (3) the pp and p̄p scattering are also
connected to the extent that analyticity and unitarity lead
to dispersion relations; (4) the approach is predictive in
both energy and momentum variables; (5) fits to pp and p̄p
experimental data, above 20 GeV, on the forward quanti-
ties and then including differential cross sections, allow for
good global descriptions of all the data, even in different
regions of the momentum transfer.
We have presented a critical remark on a drawback that

still remains in the present formulation, which is related to
the results for ρp̄p(s), in the particular case of a forward fit.
One way to address this question may be to consider the
derivative dispersion relations up to second or third order

in the tangent operator. Results in this direction will be
reported elsewhere.
Another aspect that deserves some comment is the

number of free parameters involved in the analysis. When
including the differential cross section data, even in the re-
gion q2 ≤ 1 GeV2, the fit demands 3 exponentials in the
imaginary part of the amplitude and therefore 30 free fit
parameters. We understand that this cannot be seen as an
disadvantage of the formalism in terms of a large number of
parameters. In fact, we are not treating a theoretical model
but, on the contrary, a model-independent approach aimed
to describe and predict the physical quantities of interest
on empirical and formal grounds. Therefore, the number of
parameters does not matter and, in this context, it can be
as large as it is needed.
In this analysis we made use of the standard sets of

experimental data on pp and p̄p scattering above 20 GeV
(referred to in Sect. 3.1), without any kind of data selec-
tion. As commented, this strategy explains the large values
of the χ2/DOF in the fits. However, it is important to men-
tion that recent analyses point out the necessity of some
screening criterion in order to avoid spurious data, nor-
malization problems and other effects in both forward and
non-forward data [39, 40]. All that could improve the qual-
ity of the fits and will be subject of future investigation.
We also note that we did not use any model informa-

tion in the construction of the parameterizations (5)–(8):
they were inferred only with basis on the empirical be-
havior of the experimental data above 20 GeV. However,
from a phenomenological point of view, it is expected that
some contributions from lower energies may still be present
at the above threshold (for example, secondary mesonic
exchanges in a Regge context [41]). Therefore it may be
interesting to test additional terms in our original parame-
terization, that could simulate these effects, from an empir-
ical point of view, and investigate the consequences in the
description of the experimental data.
We now summarize some results that we understand

are topical in this analysis. The behavior of the forward
quantities, σtot(s) and ρ(s), from pp and p̄p scattering are
characterized by crossing effects, which are typical of odd-
eron contributions. A relevant result is the prediction that
ρpp becomes higher than ρp̄p above

√
s≈ 80GeV, a result

that might be verified in the short term at the RHIC by the
pp2pp Collaboration. Our results for the differential cross
section at the Tevatron energies are in agreement with the
predictions from the majority of the models, except that by
Block et al. [32], in what concerns the position of the first
minimum. We have also discussed the applicability of our
numerical results in the normalization of elastic rates. We
add that, if we consider the fit including all the differen-
tial cross section data, the DL model is favored, since no
structures are predicted in the region of large momentum
transfer.
In closing we should stress that, despite the encourag-

ing results we have reached, this phenomenological analy-
sis constitutes a first attempt in the search of a formally
rigorous and predictive model-independent approach.
Much more research must still be done along several lines,
as for example, a complete check on all the high-energy
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theorems and bounds, to establish the exact interval in the
momentum transfer variable in which dispersion relations
hold (or another framework for evaluation of the real part
of the amplitude), studies on the effect of higher orders in
the derivative dispersion relations and a systematic investi-
gation on the influence of data selection. We hope that the
results here presented can contribute with further develop-
ments along these aspects.
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